Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Doo-Cheon Yoon, ${ }^{\text {a }}$ Chang-Eon Oh^{a} and Uk Lee ${ }^{\mathrm{b} *}$

${ }^{\text {a }}$ Department of Chemistry, Yeungnam University, Kyongsan 712-749, South Korea, and ${ }^{\mathbf{b}}$ Department of Chemistry, Pukyong
National University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, South Korea

Correspondence e-mail: uklee@mail.pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.057$
$w R$ factor $=0.136$
Data-to-parameter ratio $=19.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

[$\mu-N, N, N^{\prime}, N^{\prime}$-Tetrakis(2-pyridylmethyl)-1,2ethanediamine]bis[dichlorocopper(II)]

Each $\mathrm{Cu}^{\mathrm{II}}$ atom in the title complex, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\right.$ (tpen) $]$, where tpen is $N, N, N^{\prime}, N^{\prime}$-tetrakis(2-pyridylmethyl)-1,2-ethanediamine $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6}\right)$, is clearly five-coordinate with approximate square-pyramidal geometry. Four of the coordinating atoms, viz. a Cl atom and the three N atoms of a tpen ligand, lie in a distorted square plane around $\mathrm{Cu}^{\text {II }}$. The second Cl atom occupies the apical position of the square pyramid. The Cu Cl distances are 2.262 (1) and 2.478 (1) \AA, and the $\mathrm{Cu}-\mathrm{N}$ distances are 2.006 (4) to 2.089 (4) \AA.

Comment

The most interesting aspect in the coordination chemistry of copper(II) is the variety of coordination geometries possible for the central $\mathrm{Cu}^{\mathrm{II}}$ atom (Anderson et al., 1976). $N, N, N^{\prime}, N^{\prime}-$ Tetrakis(2-pyridylmethyl)-1,2-ethylenediamine (referred to as tpen) is a ligand. It is expected to form a mononuclear hexadentate octahedral complex. However, because of the steric crowding in mononuclear copper(II) complexes, the formation of dinuclear copper(II) complexes is also possible (Karlin et al., 1992; Mahapatra et al., 1997; Casella et al., 1988; Farrugia et al., 1997). Recently, dinuclear transition-metal complexes containing $\mathrm{Cu}^{\mathrm{II}}$ with various chelating ligands related to tpen have been reported (Jensen et al., 1997). Furthermore, the high reactivity of the chloro ligand which coordinates to $\mathrm{Cu}^{\mathrm{II}}$ makes the complexes useful as a starting material for various reactions.

(I)

We report here the crystal structure of the centrosymmetric title complex, (I). In the title complex (Fig. 1), the dinuclear $\mathrm{Cu}^{\text {II }}$ is contained as a central dimetal unit, which is connected by a tpen bridge and with four coordinated chloro ligands. In the crystal structure, each $\mathrm{Cu}^{\mathrm{II}}$ is clearly five-coordinate with approximate square-pyramidal geometry. Bond distances and angles are summarized in Table 1. Four of the coordinating atoms, viz. one of the Cl atoms (Cl 1) and the three N atoms of

Received 14 January 2002 Accepted 11 February 2002 Online 22 February 2002
\qquad

Figure 1
ORTEP-3 (Farrugia, 1997) drawing of (I) with the atom numbering; displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
the tpen ligand, lie at the corners of a distorted square plane around $\mathrm{Cu}^{\text {II }}$. The second Cl atom (Cl 2) occupies the apical position of the square pyramid. The $\mathrm{Cu}-\mathrm{Cl}$ bond lengths are not identical and are 2.2618 (14) and 2.4781 (14) \AA. The Cu N bond lengths are 2.006 (4), 2.020 (5) and 2.089 (4) \AA. Comparing the $\mathrm{Cu}-\mathrm{Cl}$ bonds, it is found that the length of the $\mathrm{Cu}-\mathrm{Cl}$ apical bond is significantly longer than that of the basal one ($2.478 \AA$ versus $2.262 \AA$). This axial expansion may be due to the influence of the d^{9} electronic configuration on the coordination geometry (Anderson et al., 1976). In addition to interatomic distances, it is noteworthy to mention bond angles. The $\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{Cl} 2\left[105.24(6)^{\circ}\right]$ bond angle is greater than the other bond angles $\left[\mathrm{Cl} 2-\mathrm{Cu}-\mathrm{N} 195.6(1)^{\circ}, \mathrm{Cl} 2-\right.$ $\mathrm{Cu}-\mathrm{N} 296.4(1)^{\circ}$ and $\left.\mathrm{Cl} 2-\mathrm{Cu}-\mathrm{N} 395.63(14)^{\circ}\right]$. This is believed to be a result of repulsion by the lone-pair electrons of Cl 1 and Cl 2 . Two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions are present in the crystal structure. Also, the $\mathrm{Cu} \cdots \mathrm{Cu}$ nonbonding distance for (I) is 7.932 (1) \AA.

Experimental

A solution of $\mathrm{CuCl}_{2} .5 \mathrm{H}_{2} \mathrm{O}(0.23 \mathrm{~g}, 1 \mathrm{mmol})$ in methanol (50 ml) was added to a solution of tpen $(0.22 \mathrm{~g}, 0.5 \mathrm{mmol})$ in methanol $(5 \mathrm{ml})$. A green precipitate formed immediately after mixing. The mixture containing the precipitate was stirred for 20 min . and then 5 ml of a methanolic solution of sodium acetate $(0.1 \mathrm{~g}, 1.2 \mathrm{mmol})$ was added. The precipitate dissolved immediately without ligation of acetate.

The resulting green solution was stirred for 1 h . After stirring, the green solution was left at room temperature for a few days. A single green crystal suitable for X-ray analysis was then formed. Analysis calculated for the title complex: C 45.03, H 4.07 , N 12.12%; found: C 44.85, H 4.13, N, 12.22\%.

Crystal data
$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6}\right)\right.$]
Mo $K \alpha$ radiation
$M_{r}=693.42$
Orthorhombic, Pbca
$a=13.113$ (1) \AA
$b=20.926$ (2) \AA
$c=10.6378$ (8) \AA
$V=2919.1$ (4) \AA^{3}
$Z=4$
$D_{x}=1.589 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection

Stoe Stadi4 diffractometer

 $\omega-2 \theta$ scansAbsorption correction: numerical
(Stoe \& Cie, 1996)
$T_{\text {min }}=0.665, T_{\text {max }}=0.824$
3548 measured reflections
3324 independent reflections
2303 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.136$
$S=1.16$
3324 reflections
172 parameters
H -atom parameters constrained

Cell parameters from 25 reflections
$\theta=9.6-10.9^{\circ}$
$\mu=1.85 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Monoclinic, green
$0.32 \times 0.25 \times 0.22 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.079 \\
& \theta_{\max }=27.4^{\circ} \\
& h=0 \rightarrow 16 \\
& k=0 \rightarrow 26 \\
& l=0 \rightarrow 13 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 5 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0328 P)^{2}\right. \\
& \quad+10.1201 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.79 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Cu}-\mathrm{N} 1$	$2.006(4)$	$\mathrm{Cu}-\mathrm{Cl} 1$	$2.262(1)$
$\mathrm{Cu}-\mathrm{N} 3$	$2.020(5)$	$\mathrm{Cu}-\mathrm{Cl} 2$	$2.478(1)$
$\mathrm{Cu}-\mathrm{N} 2$	$2.089(4)$		
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3$	$158.8(2)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{Cl} 1$	$158.4(1)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$80.7(2)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl} 2$	$95.6(1)$
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 2$	$80.3(2)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{Cl} 2$	$95.6(1)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{Cl} 1$	$96.8(1)$	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{Cl} 2$	$96.4(1)$
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{Cl} 1$	$97.5(1)$	$\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{Cl} 2$	$105.24(6)$

H atoms were treated as riding atoms using SHELXL97 defaults. The measurement of reflections from (459) to $(7,12,9)$ was repeated following some problems during the data collection.

Data collection: Stadi4 (Stoe \& Cie, 1996); cell refinement: Stadi4; data reduction: X-RED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS97-2 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97-2 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

References

Anderson, O. P., Packard, A. B. \& Wicholas, M. (1976). Inorg. Chem. 15, 16131618.

Casella, L., Gullotti, M., Pallanza, G. \& Rigoni, L. (1988). J. Am. Chem. Soc. 110, 4221-4227.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

metal-organic papers

Farrugia, L. J., Lovatt, P. A. \& Peacock, R. D. (1997). J. Chem. Soc. Dalton Trans. pp. 911-912.
Jensen, K. B., McKenzie, C. J., Simonsen, O., Toftlund, H. \& Hazell, A. (1997). Inorg. Chim. Acta, 257, 163-172.
Karlin, K. D., Tyeklar, Z., Farooq, A., Haka, M. S., Ghosh, P., Cruse, R. W., Gultneh, Y., Hayes J. C., Toscano, P. J. \& Zubieta, J. (1992). Inorg. Chem. 31, 1436-1451.

Mahapatra, S., Kaderli, S., Llobet, A., Neuhold, Y. M., Palanche, T., Halfen, J. A., Young, V. G., Kaden, T. A., Que, L., Zuberbuhler, A. D. \& Tolman, W. B. (1997). Inorg. Chem. 36, 6343-6356.

Sheldrick, G. M. (1997). SHELXS97-2 and SHELXL97-2. University of Göttingen, Germany.
Stoe \& Cie (1996). Stadi4, X-RED and X-SHAPE. Stoe \& Cie GmbH, Darmstadt, Germany.

